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Abstract

This paper deals with an inverse problem that consists of the identification of multiple line heat sources placed in a

homogeneous domain. In the inverse problem under investigation the location and strength of the line heat sources are

unknown. The estimation procedure is based on the boundary element method. As the discrete problem is non-linear if

the location of the line heat sources is unknown, an iterative procedure has to be applied to find out the location of the

sources. The proposed approach has been tested for steady and transient experiments. In the present study we propose

an original approach to solve the steady problem. As in the steady heat conduction case we have a limited number of

unknown for each source, a ‘‘parameter estimation’’ approach can be applied to estimate the sources. Using the

techniques of parameter estimation, we can also estimate the confidence interval of the estimated locations, which

permits to design an optimal experiment. We intend to present some numerical and experimental 2D results.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

In the last few years, the inverse heat conduction

problem (IHCP) has been the subject of a lot of works in

various fields of research. Domains such as unknown

boundary conditions reconstruction or parameters

identification have been widely investigated. Paradoxi-

cally, the bibliography on heat source term estimation in

the fundamental equation of the heat transfers is not

numerous. As this problem requires a lot of information

(measurements) to be solved properly, most of the works

on this subject are restricted to point heat sources esti-

mation. However, some authors [1,2] present some

methods to solve the general problem of an unknown

general heat generation, but they propose only compu-

tational investigations.

The first works on point heat sources estimation have

been proposed by Huang and €OOzisik [3] and Neto and
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€OOzisik [4–6] in 1992 and 1993. These works are based on

the conjugate gradient method coupled with the finite

element method (FEM) in transient heat conduction.

The proposed methods have been applied to the strength

estimation of one or two sources in the 1D and 2D cases

when the location of the sources is known. In [5], the

authors present a method to cope with both location and

strength estimation for one source in a 1D geometry.

More recently, Yang [7–9] used the FEM and the finite

difference method to obtain a linear model for strength

estimation when the location of the point heat sources is

known. Compare to the conjugate gradient method

previously described, the method developed by Yang

permits to avoid the iterative calculations, which are

inherent in the gradient methods. Nevertheless, the

method is applied to a maximum of two sources and can

not be use when the location of the sources is unknown.

In the steady case, Karami and Hematiyan [10] propose

the boundary element method (BEM) for strength or

location estimation of multiple point heat sources in the

2D case. This method does not permit to estimate si-

multaneously the strength and the location of the heat

sources but only one of these two variables, the other

being known.
ed.
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Nomenclature

C, G, H, I, A1 matrices

B1 vector

d distance

g source strength (Wm�1)

h heat transfer coefficient (Wm�2 K�1)

J cost function

K number of point sources

k thermal conductivity (Wm�1 K�1)

M number of measurements

N number of boundary elements

N 0 number of internal points

P heat flux vector

r correlation coefficient

S strength vector

T temperature vector

x, y, z Cartesian co-ordinates

X sensitivity matrix

Y measurements vector

Subscripts

cal direct calculation result

mes measure

1 ambient conditions

k heat source index

Superscripts

� least squares solution

� approximated heat source contribution
0 internal points

* regular sensitivity coefficient

Greek symbols

b parameters vector

e measurements error vector

k thermal conductivity (Wm�1 K�1)

H heat sources contribution vector

u heat flux (Wm�2)

h temperature (�C)
C boundary

r standard deviation

g measurements model vector

n sensitivity coefficient

m number of freedom degrees
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All the papers previously mentioned are purely nu-

merical investigations. As inverse problems are very

sensitive to measurements errors, they have to be tested

with experimental data. It is only in dealing with real

data that one is able to get the bugs out of the system

and understand what will and will not work. In 2001, we

have presented the results of a steady experiment for

multiple sources in 2D [12]. This method, based on

BEM, is available for multiple sources for both location

and strength estimation. In these 2D applications, an

infrared scanner is used to obtain the boundary mea-

surements and some internal measurements are given by

thermocouples. Recently, Abou Khachfe and Jarny [11]

have proposed the FEM associated to a conjugate gra-

dient algorithm to cope with the location and strength

identification of multiple point heat sources. This

method has been tested on a 2D experiment, which uses

only boundary measurements given by thermocouples.

This method gives good results for the identification of

two sources, but the author concludes by highlighting

the interest of an infrared scanner to identify more

sources.

In all the previous works, the methods are restricted

to the estimation of one or two point heat sources and

the inverse problem of location estimation is rarely

considered. In 2002 [13], we have proposed a numerical

method to estimate the location and the strength of

multiple static heat sources in transient heat conduction.
This method can also cope with the estimation of a

moving source in 2D or 3D domains. In a recent work

[14], we have tested our method on 2D experiments for

the case of multiple static heat sources and for the case

of a moving heat source. 3D applications are difficult to

perform due to experimental problems to produce a

controlled point source with a significant strength.

BEM is well adapted to point heat source treatment

because it does not require any refined mesh around the

point heat source as in FEM. Indeed, for BEM taking

into account different locations for a point heat source in

2D problems leads to a log function calculation of the

co-ordinates in steady case and incomplete gamma

function calculation of the co-ordinates in transient case.

As in steady heat conduction the number of un-

known parameters for each source is restricted to one

strength and two (in 2D) or three (in 3D) co-ordinates, a

parameter estimation approach can be applied to iden-

tify the sources. As it was previously mentioned, inverse

problems are very sensitive to measurements errors; this

is the reason why it is important to test the identification

methods with experimental data and of course to give an

estimation of the confidence interval surrounding the

result of the inversion. This aspect of the problem is

never discussed in the literature dealing with heat source

estimation even in our contribution [12].

In our previous work [12] the strength is obtained

with a linear function estimation procedure using an



C. Le Niliot, F. Lefèvre / International Journal of Heat and Mass Transfer 47 (2004) 827–841 829
inverse formulation of BEM. The locations are obtained

using an iterative procedure once the strengths are

known. In [12] the scope of the paper was to show that

we could estimate both the strength and the location of

multiple sources. The proposed numerical approach

didn’t permit us to estimate the confidence interval

around each sources knowing the noise in the mea-

surements. In this paper, we propose an original meth-

od, which is based on a parameter estimation procedure.

In this case, BEM is used to build the direct model of the

measurements. This new procedure permits to estimate

the confidence interval of the estimated locations and

strengths, particularly to determine if an accurate esti-

mation is possible or not.

This paper is divided in two parts. The first one de-

scribes in details the parameter estimation approach of

Beck and Arnold [15] applied to our problem of point

heat source estimation and the second one presents some

numerical results.
2. The ‘‘parameter estimation’’ approach

In this part, we present the parameter estimation

procedure for point heat sources identification in steady

heat conduction. The method used here is based on the

work of Beck and Arnold [15]. The heat source term is

not strictly a parameter of the steady heat conduction

equation but rather an input of the system. Without any

information on the form of the heat source function, the

inverse problem can not be treated as a parameter esti-

mation procedure but as a function estimation proce-

dure. Nevertheless, in the case of point heat sources, this

approach is possible because the number of unknowns is

known and limited to one strength and two (in 2D) or

three (in 3D) co-ordinates for each source.

If we follow the parameter estimation approach rec-

ommended by most of the authors, we have to produce a

mathematical model of our measurements. BEM per-

mits to build this mathematical model.

2.1. The mathematical model using BEM

Let us introduce briefly the BEM. Considering point

M , in domain X of boundary C, integrating twice the

linear steady heat transfer equation weighted by a fun-

damental solution T �, leads to the boundary integral

equation (BIE) for the linear stationary heat conduction

hM þ
Z
C
h�q dC ¼

Z
C

u
k
T � dCþ

Z
X

g
k
T � dX ð1Þ

Here u is the heat flux, T � the fundamental solution, q�

the normal derivative of T � and c a coefficient which

depends on the position of M . Namely c ¼ 1 if M is in X
and c < 1 if M is on C (e.g. c ¼ 0:5 if C is smooth at M).
Fundamental solution T � is a space dependent Green

function, which allows local measurements (internal

points) and singularities as point heat sources. Function

T � used to obtain Eq. (1) is a solution of

DT � þ dM ¼ 0 ð2Þ

where dM is the Dirac function at point M in domain X.
Here T � is a Green function that represents the response

to a point heat source in an infinite domain. Thus, T �

can be written

in 2D; T � ¼ 1

2p
ln

1

d

� �
and in 3D; T � ¼ 1

4p
1

d

ð3Þ

where, in both cases, d is the distance between the cur-

rent node and the point M of domain X. BIE (1) lets

appear a volume integral relative to heat source term g.

In order to transform this volume integral in a discrete

form without a complete domain mesh let us consider g
as a set of K point heat sources [12]. By applying this last

property, the heat source term in BIE (1) can be writtenZ
X

g
k
T � dX ¼

XK
k¼1

gk
k
T �ðdM ;kÞ ð4Þ

Here gk is the algebraic strength of source k and T �ðdM ;kÞ
is function T � calculated for the distance from point M
to source k. This last equation explain why BEM is well

adapted to cope with point heat sources: we transform

a singular point heat source in a discrete sum function

of the distances dM ;k .

To perform a parameter estimation procedure, we

have to obtain a mathematical model of the measure-

ments. This model can be built using the boundary in-

tegral discrete formulation for the N boundary elements

and the N 0 internal points. If we use a constant ap-

proximation, which means that heat flux and tempera-

ture are constant over a boundary element we have the

following matrix expression:

0
T 0

� �
þ H

H0

� �
T � G

G0

� �
P ¼ I

I0

� �
S ð5Þ

In this last equation, T 0 is the vector of the N 0 internal

temperatures, T ðP Þ is the vector of the N boundary

temperatures (heat flux) and S is the vector of the K
sources strengths. Matrices H and G of dimension

ðN ;NÞ depends on the boundary mesh only. H0 and G0

of dimension (N 0;N ) depends on the internal points lo-

cations. Matrices I and I0 depends on the distance d
between the point heat source and the concerned

boundary element (internal point). This function is a log

function in 2D and a 1=d function in 3D (see (3)).

Let assume that both temperature and heat flux are

measured on the boundary. The heat flux is obtained from

the temperature with a known heat transfer coefficient.
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This type of boundary condition, called the double

specified boundary condition, is necessary to solve the

inverse problem of heat sources estimation if we don’t

have internal measurements. The double specified

boundary condition is not necessary on the entire

boundary and we can have a simple boundary condition

on a part of the boundary.

Nevertheless, considering the boundary conditions,

the inverse problem of point heat sources estimation

requires measurements, which should be at least equal to

the number of unknowns. It is therefore necessary to

obtain these measurements from the boundary or from

internal measurements.

Let us assume for the numerical development that the

heat transfer coefficient h is constant along the bound-

ary, we obtain

uðiÞ ¼ hðhðiÞ � h1Þ ð6Þ

In this last equation, h1 is the ambient temperature, uðiÞ
and hðiÞ are, respectively, the heat flux and the temper-

ature for boundary element Ci. Let us introduce (6) in

(5), we obtain

0

T 0

� �
þ H

H0

� �
T ¼ h

G

G0

� �
T � h

G

G0

� �
T1 þ I

I0

� �
S ð7Þ

We assemble together the coefficient of the boundary

and internal temperatures into a matrix A and we in-

troduce vector B, which depends on the ambient con-

ditions. We obtain the following expression for A and B:

A ¼
H� hG
H0 � hG0

� �
0

0 1

2
4

3
5 and B ¼ h

G

G0

� �
T1 ð8Þ

Introducing A and B in (7), we obtain

A
T
T 0

� �
¼ I

I0

� �
S � B ð9Þ

A is a square matrix of dimension ðN þ N 0;N þ N 0Þ. The
mathematical model of the measurements g can also be

written

g ¼ T
T 0

� �
¼ A�1 I

I0

� �
S

�
� B

�
ð10Þ

Using this approach we can obtain an estimation of the

error on the identified locations and strength. This

general formulation is given for N boundary elements

and N 0 internal points. In the following examples we do

not use any thermocouple (N 0 ¼ 0) and we use only

some superficial temperature measurements obtained

using infrared thermography. In the following the total

number of measurements is M .

In our steady state estimation procedure described in

[12], we introduced two vectors: bHH and eHH. These vectors

are built from a discrete form of the boundary integral

equation (see [12]). bHH is the vector of the boundary
variables contribution and eHH the vector of the heat

sources contribution, which depends of the sources

strength and location. With eHH, we have a mathematical

model of the heat source term that we can compare tobHH, which is a linear combination of the measurements.

In [12], the problem is solved in two steps: a linear

function estimation of the strength and an iterative

procedure to estimate the location. Here we will use

vector gðbÞ to estimate the strength and the location in

the same procedure.

2.2. Error on the estimated parameters

In the first part we have presented the model gðbÞ of
the measurements contained in a vector Y . If there is no
measurement errors on the temperatures contained in

vector Y and no biased error in the model we have

Y ¼ gðbÞ for the exact location and strength contained

in parameters vector b. In 2D, considering co-ordinates

xl, yl, and strength gl of the sources ð06 l6KÞ as some

parameters assembled in vector b, we can obtain an es-

timation of the error on the estimated location and

strengths. The method is the statistical approach rec-

ommended by Beck and Arnold [15]. We describe in the

following paragraphs the procedure applied in our case.

2.2.1. Definition of the cost function

The model is a non-linear function of the co-ordi-

nates but a linear function of the strength. This property

led us to separate the two estimations: a non-linear it-

erative procedure for the co-ordinates and a linear esti-

mation of the strength. The detailed approach is given in

[12] with some experimental examples.

In order to take into account the influence of an es-

timated parameter on the others, we consider here a

unique cost function for all the parameters. To perform

this non-linear parameters estimation we build a qua-

dratic cost function and we apply a non-linear least

square procedure to obtain an estimation b̂b of b. The
cost function to be minimised is

JðbÞ ¼
XM
i¼1

ðYi � giðbÞÞ
2 ð11Þ

In this last equation, subscript imake reference to the ith
measurement. Minimising J with respect to parameters

bj leads to find

oJ
obj

¼ 0 )
XM
i¼1

ogiðbÞ
obj

ðYi � giðbÞÞ ¼ 0 ð8jÞ ð12Þ

Introducing sensitivity coefficient Xi;j which correspond

to the first derivative of the model for the ith measure-

ment with respect of parameter bj, we obtain

Xi;j ¼
ogiðbÞ
obj

ð13Þ
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Let us define sensitivity matrix X of component Xi;j.

Using sensitivity matrix X , we can write a matrix form

of equation (12) and we obtain the following system of

equations:

XTðY � gÞ ¼ 0 ð14Þ

As we have a non-linear estimation, the solution is ob-

tained through an iterative process with a first order

development of the errors. For measurement i at itera-
tion nþ 1 we obtain

giðb̂bnþ1Þ � giðb̂bnÞ þ
X
j

ðb̂bnþ1
j � b̂bn

j ÞXjði; bÞjb¼b̂bn ð15Þ

This last equation can be written in a matrix form

gnþ1 ¼ gn þ Xnðb̂bnþ1 � b̂bnÞ ð16Þ

Around the solution we can write that system of equa-

tions (14) is correct. If we substitute gnþ1 by its first

development, we obtain a connection between the esti-

mated parameters at iterations n and nþ 1. At least

estimated vector b at iteration nþ 1 is obtained solving

the following system of linear equations:

b̂bnþ1 ¼ b̂bn þ ðXnTXnÞ�1
XnTðY � gnÞ ð17Þ

The estimated vector bnþ1 can be connected using the

sensitivity matrix to the estimated vector obtained using

the cost function presented at Eq. (11) and described in

details in [12]. Let us note that vector b contains the

location and strength of the point heat sources.

2.2.2. Statistic considerations

Measurements contained in vector Y are generally

not exact. The measurement errors produce on the es-

timated vector b̂b some errors, amplified by the ill-posed

character of the inverse problem. We assume that the

measurements errors ei are: uncorrelated, Gaussian with

an average EðeÞ equal to 0 and a constant variance r2.

These statistical properties are applied to internal and

superficial measurements. Thus, all the measured tem-

peratures eYYi on each element Ci corresponding to the

exact data gi are given according to the following

equation:

eYYi ¼ giðbÞ þ ei ð18Þ

We try to estimate the errors introduced by the mea-

surement errors on the estimated parameters. Let us

assume that the values, results of the iterative process

are close to the optimal values and that they are solu-

tions of

XTjb¼b̂bðeYY � gðb̂bÞÞ ¼ 0 ð19Þ

If we develop g around the solution we obtain

gðb̂bÞ ¼ gðbÞ þ Xjbðb̂b� bÞ ð20Þ
Using Eq. (20) in (19), we obtain a relation between the

real parameters and the estimated ones and we have

b̂b ¼ bþ ðXTXÞ�1
XTe ð21Þ

Here vector e is the vector of the measurement error.

Using this last equation with the assumptions on the

statistical properties of the measurement errors we can

obtain the properties of the estimated vector b̂b, these
properties are also given in [15]. The final results are

Eðb̂bÞ ¼ bþ EððXTXÞ�1
XTeÞ

¼ bþ ðXTXÞ�1
XTEðeÞ ¼ b ð22Þ

and

Vðb̂bÞ ¼ r2ðXTXÞ�1 ð23Þ

It has to be noticed that the variance-covariance ma-

trices are calculated using a linear approximation

around the solution. This linear assumption will be

justified only if we are very close to the solution. As a

result the diagonal terms of matrix (23) are the variance

of each parameter and we can obtain the standard de-

viation using the square root of these variances.

We can estimate the correlation between all the pa-

rameters by calculating the correlation coefficient ri;j
between estimated parameters b̂bi and b̂bj. If we note V the

variance, we have

r2i;j ¼
V 2
i;j

Vj;jVi;i
ð24Þ

The value of ri;j is in the range )1 and 1 and we consider

that the parameters are highly correlated when

jri;jjP 0:9.

2.3. Confidence region and interval

If we perform p experiments (p estimations) we find

100(1� a)% of these estimations inside a confidence

region at level (1� a) centred on the value b ¼ Eðb̂bÞ. If
we assume a Gaussian distribution around their mean

value, such a confidence region is represented by a hyper

ellipsoid which equation is

ðb̂b� bÞTV�1ðb� b̂bÞ ¼ v21�aðmÞ ð25Þ

Here v21�aðmÞ is the calculated value of v2 for m freedom

degrees and a probability level equal to 1� a [16]. The

exact value of each parameter is in the range

b̂bi � ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21�aðmÞ

q
6 bi 6 b̂bi þ ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21�aðmÞ

q
ð26Þ

In the following we present the confidence region with

a confidence interval equal to 99%.
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3. Numerical examples of the parameter estimation

method for point heat source estimation

In this part, we propose some numerical results ob-

tained for the estimation of one to four heat sources in a

2D system. The numerical simulation is similar to the

experimental one presented in [12]. It concerns a long

cement bar of section 50· 50 mm2 crossed in its longest

dimension by multiple line heat sources. A cross section

of the bar is shown in Fig. 1.

The measurements necessary to solve the inverse

problem are some temperatures calculated by a direct

computation. The temperature field is obtained consid-

ering a constant heat transfer coefficient h ¼ 10

Wm�2 K�1 on the four sides, an ambient temperature

h1 equal to 0 �C. A thermal conductivity k equal to 1

Wm�1 K�1 is adopted which is a value close to that of

cement (0.85 Wm�1 K�1). The computational domain is

discretised into 100 linear elements (N ¼ 100), 25 per

side of the square bar, which is sufficient to solve cor-

rectly the direct problem. In order to test the sensitivity

of the method to measurement errors, the numerical

temperature are disrupted by an additional Gaussian

error of zero mean value and standard deviation r.
In all the presented examples we have N ¼ 100 ele-

ments and we try to avoid the internal sensors (ther-

mocouples), nevertheless we present an example using

two and three (N 0 ¼ 3) thermocouples. The measure-

ments are the temperature at the N boundary nodes,

thus we have the number of measurements M ¼
N ¼ 100.
Boundary

g4

g1

g5

y (m)

0.01250.0 0.025

0.05

0.0375

0.0125

0.0

0.025

: unknow

 

B
ou

nd
ar

y 
 Γ

4   

curvilinear coordinate : c.c.=0 (0

c.c.=0.15

Fig. 1. Scheme of the st
3.1. Analysis of the sensitivity coefficients

We present below a study of the sensitivity coeffi-

cients to the location and the strength of the point heat

sources. The sensitivity coefficients are obtained from

Eq. (13). The aim of this study is to evaluate the feasi-

bility of the inversion according to the number of heat

sources and temperature measurements. In parameter

estimation procedures some authors prefer to use the

normalized sensitivity coefficient X � rather than the

regular sensitivity coefficient X (cf. Eq. (13)). The nor-

malized sensitivity coefficient is defined by

X �
i;j ¼ b̂bj

ogiðbÞ
obj

ð27Þ

Here sensitivity coefficient X �
i;j which corresponds to the

first derivative of the model for the ith measurement

with respect to parameter bj multiplied by an estimation

b̂bj of parameter bj. Normalized sensitivity coefficient is

more convenient to compare sensitivity coefficient for

different nature of parameters: here the strength and the

location of the heat sources. It is impossible to present

some normalized sensitivity coefficients related to the co-

ordinates of the source, x or y, because they are function

of the chosen co-ordinate system. Nevertheless we can

present some normalized sensitivity coefficients calcu-

lated with the distance dM ;k from the source to the

boundary node, this distance is used to calculate func-

tion T � (cf. Eq. (3)). For boundary node i and source k at
location ðxk ; ykÞ of strength gk we have three sensitivity

coefficients X �
  Γ3  

g3

g2

x (m)

0.050.0375

n heat source

B
ou

nd
ar

y 
 Γ

2  

Γ1  

.2)

c.c.=0.05

c.c.=0.1

udied 2D section.
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di;k
ogiðbÞ
oxk

for the sensitivity to a variation of the x co-ordinate

di;k
ogiðbÞ
oyk

for the sensitivity to a variation of the y co-ordinate

gk
ogiðbÞ
ogk

for the sensitivity to a variation of the strength

ð28Þ
For the normalized sensitivity coefficients obtained for

the co-ordinates, we use a displacement of 1 mm on x or y
and we multiply the result by the distance d, also in mm.

We present in Figs. 2 and 3 the sensitivity coefficients to

the co-ordinates of different sources activated with a

strength of 10 Wm�1 versus the curvilinear co-ordinate.

On each figure, we present two cases related to sources g1
or g5, the other sources being not activated. Considering

the geometry (see Fig. 1) the other cases corresponding to

sources g2, g3 and g4 can be deducted from g1. Mainly for

our system the sensitivity coefficients have a sufficient

magnitude in order to estimate the location if the tem-

perature is measured on the four boundaries.

In Figs. 4 and 5 we present the normalized sensitivity

coefficients for a displacement of x and y. As we can see

in these two figures, coefficients X �
x and X �

y are not cor-

related, and it will be possible to estimate both x and y
for the two sources with our measurements. In the next

paragraph we will examine the possibility to estimate

both g1 and g5 in the same test.
Fig. 2. Sensitivity coefficient to x along the scanned boundaries f
The influence of the strength to the sensitivity coef-

ficients to the co-ordinate x is shown in Fig. 6 for source

g5 activated with two different strengths of 10 or 40

Wm�1. As the sensitivity coefficients are linearly vari-

able with the strength, they are four times higher for a

strength equal to 40 Wm�1 than for a strength equal to

10 Wm�1.

In Fig. 7, we present the sensitivity coefficients to the

strength of the sources as a function of the curvilinear

co-ordinate. The sensitivity coefficients for g5 are sym-

metrical on each boundary, because g5 is located in the

center of the system. This is not the case for g1 for which
the sensitivity is higher on some parts of the boundary

due to the lower distance from the source to the scanned

boundary. As a result the strength and location identi-

fication with only infrared data is possible: a lack of

sensitivity on a boundary is balanced by a higher sen-

sitivity elsewhere. The second conclusion is that it is

possible to estimate both strength and location of a

single source, for example g5. If we examine Figs. 6 and

7, it is obvious that the sensitivity coefficients for the

location and the strength are not correlated. This is not

the case when we have several sources activated at the

same time as presented in the next paragraph.

3.2. Confidence interval for the experimental geometry

The numerical examples proposed in this part aim to

illustrate the sensitivity coefficient study described pre-

viously. In order to simulate measurements errors, an

additional Gaussian error of zero mean value and

standard deviation r is added to the temperature field
or different sources activated with a strength of 10 Wm�1.



Fig. 3. Sensitivity coefficient to y along the scanned boundaries for different sources activated with a strength of 10 Wm�1.
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Fig. 4. Normalized sensitivity coefficient to x along the scanned boundaries for different sources activated with a strength of 10 Wm�1.
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obtained from a direct calculation with a confidence

interval at 99% equal to �2:576� r.

3.2.1. Numerical simulation from the experimental case

In the first example, four sources g1, g2, g3 and g4 are
activated with, respectively, 10, 20, 30 and 40 Wm�1.

This example is a numerical simulation of an experi-

mental case presented in [12]. The results of the experi-

mental estimation are given in Table 1. In this table we

find the errors between the estimated parameters and the
real parameters. The results of this experiment are good

but considering the approach presented in [12] we can-

not give any confidence interval.

In order to compare the parameter estimation ap-

proach results to the experimental results given in [12],

we propose some numerical experiments in the same

conditions. In this virtual experiment we find the four

sources g1, g2, g3 and g4 activated with, respectively, 10,

20, 30 and 40 Wm�1. We present some results with two

levels of additional noise to the temperature field ob-
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Fig. 5. Normalized sensitivity coefficient to y along the scanned boundaries for different sources activated with a strength of 10 Wm�1.
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tained with the direct problem: r ¼ 0:1 �C for good

quality measurements and r ¼ 0:5 �C for poor quality

measurements. An example of the error and the tem-

perature field obtained from a direct calculation is pre-

sented in Fig. 8 versus the curvilinear co-ordinate.

Compared to the average boundary temperature

(around 50 �C) we have a relative error of 0.5% for

r ¼ 0:1 �C and 2.6% for r ¼ 0:5 �C.
The results of the 100 parameter estimations are as-

sembled in a 3D graph (see Fig. 9). The base is the plan
ðX ; Y Þ and the vertical axe represents the strength of the

estimated source. As it could be predicted, the results are

much more stable using good quality measurements

(Fig. 9a) than with poor quality measurements (Fig. 9b).

The mean values and the standard deviation for each

parameter are given in Table 2 (r ¼ 0:1 �C) for good

quality measurements and in Table 3 (r ¼ 0:5 �C) for

poor quality data. These results are very similar to the

experimental results given in Table 1. In Fig. 9, we can

see that if a location is found ‘‘deeper’’ in the bar, its
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Table 1

Results of an estimation on a live experiment involving four sources (g1 � g4), extract from Le Niliot and Lef�eevre [12]

Source Strength g (Wm�1) Error Dg (Wm�1) Distance: estimated-

real (mm)

Error on x co-

ordinate (mm)

Error on y co-

ordinate (mm)

g1 10 0.0 3.5 )0.6 )3.5
g2 20 2.3 1.9 1.9 0.3

g3 30 )3.5 1.4 0.1 1.4

g4 40 )1.4 0.4 )0.4 )0.1

Fig. 8. Temperature field and corresponding measurement error for the case presented in Fig. 9; error: (a) (r ¼ 0:1 �C) and (b) (r ¼
0:5 �C).
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strength is over estimated. This is the case for g1 which

location is estimated nearly at the centre (see Fig. 9b)

with a strength of 46 Wm�1 instead of 10 Wm�1. We
can see also the correlation between the level of the

strength and the quality of the location estimation. As

we can see in Tables 2 and 3, as the strength increases
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Table 2

Results of an estimation on a virtual experiment for four sources g1, g2, g3 and g4 activated with, respectively, 10, 20, 30 and 40 Wm�1,

results obtained with r ¼ 0:5 �C and 100 estimation results

Source Mean value of

the estimated

strength, g
(Wm�1)

Standard devia-

tion on strength,

g (Wm�1)

Mean value of estimated

co-ordinate (mm)

Standard deviation on the

estimated co-ordinate (mm)

x y rx ry

g1 10.1 0.5 12.6 12.6 2.9 2.9

g2 19.9 0.5 37.5 12.5 0.2 0.2

g3 29.9 0.5 37.5 37.5 0.1 0.2

g4 40.1 0.5 12.5 37.5 0.1 0.1

Table 3

Results of an estimation on a virtual experiment for four sources g1, g2, g3 and g4 activated with, respectively, 10, 20, 30 and 40 Wm�1,

results obtained with r ¼ 0:5 �C and 100 estimation results

Source Mean value of

the estimated

strength, g
(Wm�1)

Standard devia-

tion on strength

g, (Wm�1)

Mean value of estimated

co-ordinate (mm)

Standard deviation on the

estimated co-ordinate (mm)

x y rx ry

g1 11.1 6.2 12.6 12.6 2.9 2.9

g2 19.7 3.6 37.7 12.4 1.3 1.3

g3 29.7 3.5 37.6 37.6 0.9 0.9

g4 39.4 4.1 12.4 37.6 0.7 0.7
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the standard deviation of the co-ordinates decreases.

This result confirms the sensitivity analysis presented in

Fig. 6, where the sensitivity to the location increases

linearly with the strength of the source. As a result the

other sources are found near the boundary with a

strength lower than expected. This 3D representation

does not permit to present clearly all the results ob-

tained, particularly the confidence interval.

The results of the location estimation are presented in

an other manner in Fig. 10. The estimated locations

obtained from 100 numerical simulations where the
measurements are disrupted with 100 different Gaussian

distributions are presented with their confidence area

projected onto the plane of the co-ordinates. Each

confidence area is given with a confidence interval equal

to 99% and 12 freedom degrees (3 per source). The ad-

ditional error for the temperature field is different for

each one of the 100 simulations. In Fig. 10(a) the

Gaussian error has a standard deviation r equal to

0.1 �C and in Fig. 10(b) r is equal to 0.5 �C.
The estimated co-ordinates with the 100 simula-

tions are located within the confidence ellipse. As it was



Fig. 10. Location estimation results for four sources g1, g2, g3 and g4 activated with respectively 10, 20 30 and 40 Wm�1. Results for

(a) r ¼ 0:1 �C and (b) r ¼ 0:5 �C.

Fig. 11. Location estimation results for four sources g1, g2, g3
and g4 activated with the same strength equal to 25 Wm�1. The

temperature and the heat flux are given on the whole boundary

and r ¼ 0:1 �C.
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predictable from the sensitivity coefficients study, the

confidence interval is high when the strength of the heat

source is low (for g1 with 10 Wm�1) and becomes

smaller when the strength grows. For a standard devi-

ation r equal to 0.1 �C, which is a realistic error for

infrared thermography, the results show that it is pos-

sible to estimate this configuration with a good preci-

sion. For a standard deviation r equal to 0.5 �C, the
estimation of g1 becomes difficult, see also Table 3,

but this last example corresponds to very poor qual-

ity measurements. These results confirm the experi-

mental results presented in [12] for a similar case

(cf. Table 1).

3.2.2. Results obtained with less measurements

The second example is similar to the previous one.

Four sources (g1–g4) are activated with the same

strength g equal to 25 Wm�1. In this case, we present the

results of the estimation when the information to solve

the inverse problem becomes smaller. In all the pre-

sented results, the standard deviation of the error added

to the direct temperature field is equal to 0.1 �C.
The first result presented in Fig. 11 is obtained, as in

the previous case, when both the temperature and the

heat flux is known on the whole boundary. As we can

see the results of the estimation are very good with an

error lower than 1 mm for the co-ordinates.

In Fig. 12(a), we present the results of the location

estimation when both the temperature and the heat flux

are known on three faces (C1, C2 and C3), the forth one

(C4) being submitted to a Fourier boundary condition

with a heat transfer coefficient h equal to 10 Wm�2 K�1.

In Fig. 12(b), the temperature and the heat flux are

known on boundaries C1 and C3 when C2 and C4 are

submitted to a Fourier boundary condition.

The confidence ellipses lose their shape compare to

the precedent case. The variance on co-ordinate y be-
comes more important for the sources situated near the

face. For these sources we have a lack of information for

y co-ordinates. This result can be explained regarding

the sensitivity coefficient study presented before. Let us

take for example Fig. 12(b), which is symmetrical. For

g1, the sensitivity coefficients to y and to the strength are

linearly dependant on face C1, where we get the infor-

mation. This correlation between the co-ordinate y and

the strength of source g1 explains that the error on co-

ordinate y and strength is much more important than for

co-ordinate x. A large error on y co-ordinate is com-

pensated by a large error on the strength as in the results

presented in Fig. 9.

In the last example for this configuration, the tem-

perature and the heat flux are known on two faces,



Fig. 12. Location estimation results for four sources g1, g2, g3 and g4 activated with the same strength equal to 25 Wm�1. Result for

r ¼ 0:1 �C. Temperature and heat flux are given on: (a) C1, C2 and C3 and (b) C1 and C3 only.
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which are closed together (C1 and C2), the other

boundaries (C3 and C4) being submitted to a Fourier

boundary condition. For g4, which is situated in the

corner where there is a lack of information, the confi-

dence ellipse is higher than the dimension of the square

section. This source can not be estimated without ad-

ditional information. We present in Fig. 13 the location

estimation results when two or three thermocouples

where used to solve the estimation problem.

These results show that a minimum of three sensi-

tive sensors is necessary to estimate correctly g4. With

two temperature sensors, as it is shown in Fig. 13(a),

for any location situated on a line between the two

sensors we have a strength, which permits the model to

fit the measurements. With three temperature sensors

well located, an estimation of g5 is possible, but it as-

sumes that we have an a priori assumption on its loca-

tion.
Fig. 13. Confidence ellipses obtained when the temperature and the

additional internal sensors (·) and (b) three additional internal senso
3.2.3. Estimation results in function of the number of

activated sources

In this part, we present the results of the location

estimation when the number of activated sources varies

from two to four. The strength of the activated sources

is equal to 25 Wm�1. The measurements are disrupted

with an error of standard deviation equal to 0.1 �C. In
the two cases, the middle heat source g5 is activated and

we observe the distortion of its confidence area, when

the number of activate sources increases. As we can see

in Fig. 14(a) the source situated in the center can be

estimated with a good confidence interval when only one

additional source is activated. The results displayed in

Fig. 14(b) show an estimation problem with 3 additional

sources. Indeed, in this configuration, the parameters of

the middle heat source are correlated with those of the

other sources, which explains the size of the obtained

confidence ellipse. The results could be worse with five
heat flux are given on two closed faces (C1 and C2): (a) two

rs (·).



Fig. 14. Confidence ellipses obtained when the temperature and the heat flux are given on the whole boundary with r ¼ 0:1 �C: (a) g2
and g5 activated and (b) g2, g3, g4 and g5 activated.
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sources, a configuration we did not manage to solve with

our steady-state experiment of in [12].

3.3. Numerical simulation for non-symmetrical locations

In this part, we present an example based on the same

geometry, but with four sources, which locations are not

symmetrical within the bar. The four sources are acti-

vated with a same strength equal to 25 Wm�1 and their

location are displayed in Fig. 15(b). The corresponding

direct temperature at the boundary versus the curvilin-

ear co-ordinate is given in Fig. 15(a).

In Fig. 16, we present the estimated locations with

100 numerical simulations and the corresponding con-

fidence area for each location. In this example, temper-

ature and heat flux are known along the entire boundary

and the measurements are disrupted with an error of

standard deviation equal to 0.1 �C in (a) and 0.5 �C in
Fig. 15. (a) Temperature versus the curvilinear co-ordinate; (b) locat

(M) g10).
(b). In the case (a), the estimated locations are all situ-

ated in the confidence interval. Source g6, which is lo-

cated very close to the boundary and far enough from

the other sources, has a very small confidence ellipse.

For sources g8 and g9, the confidence interval is more

important, although they are located closed to the

boundary. As they are closed to each other, their para-

meters are correlated, which explains the size of their

confidence ellipse. For source g7, which is located in the

middle of the square section, there is no problem of es-

timation in this configuration compare to the precedent

case, although there are three additional sources too.

Concerning very poor measurements quality (see

figure (b)), the confidence ellipses overlap each other and

a lot of estimated locations are located outside the

confidence ellipses. This last remark is important and

shows that as the model is non-linear, we can only get an

estimation of the confidence interval. This estimation
ions of the sources into the square bar ((�) g7; (�) g8; (}) g9;



Fig. 16. Location estimation results for four source g7, g8, g9 and g10 activated with the same strength equal to 25 Wm�1. Results for:

(a) r ¼ 0:1 �C; (b) r ¼ 0:5 �C.
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will be even less correct since the model is not linear

around the solution.
4. Conclusion

In this paper, we have presented a parameter esti-

mation for the identification of point heat sources in the

steady case. Our method permits to obtain an estimation

of the error on the results of the location and strength

estimation of multiple point heat sources. This method

can be applied to the steady case because the locations

and strengths of the point heat sources can be consid-

ered as parameters of the mathematical model. In the

transient case, these methods can not be applied because

the strength is also a function of the time. As a result,

the strength estimation procedure is a function estima-

tion procedure instead of a parameter estimation pro-

cedure.
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